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A B S T R A C T

Effective management of nitrogen (N) fertilizer is central to enhancing agricultural productivity, while im-
proving water and air quality and mitigating climate change. Quantifying “socially optimal” rates of N fertilizer
(i.e. maximizing net benefits to society while minimizing social costs) is a key component of any regulatory or
incentive program designed to better manage N application. Here, we estimate spatially-explicit socially optimal
N fertilizer application rates for corn in Minnesota that account for uncertainty, both in valuation techniques and
model parameters. We find that socially optimal rates of N fertilizer application are between 0 and 161 kg ha−1,
whereas the private optimum is 165 kg ha−1. Choice of valuation methods shifts the spatial configuration and
magnitude of the socially optimal N application rates illustrating the importance of valuation method and as-
sumptions. Even after accounting for uncertainty in valuation methods, we find reducing rates of N fertilizer
application offers significant opportunities to improve social welfare. By internalizing the social costs of ni-
trogen, net social benefits of N could increase by over $1100 ha−1, even while accounting for declines in
agricultural yields.

1. Introduction

Modern agricultural practices have dramatically increased crop
production, but have also caused widespread environmental degrada-
tion (Matson et al., 1997; Foley et al., 2005). Since 1970, reactive ni-
trogen (N) creation has increased by over 120% (Galloway et al., 2008),
largely driven by increased inorganic N fertilizer application to meet
growing global demand for agricultural commodities (Vitousek et al.,
1997). However, excess levels of N in the environment have resulted in
the degradation of air and water quality, exacerbation of climate
change, and damages to human health (Erisman et al., 2013). These
costs have historically been ignored or underestimated, particularly
relative to the benefits of increased crop yields (Compton et al., 2011).
Accounting for these costs in policies, payment schemes, or programs
designed to influence land management offers the potential to mitigate
these tradeoffs and substantially improve environmental and social
outcomes, especially in agriculturally dominated landscapes (Polasky
et al., 2011; Pennington et al., 2017).

Effectively managing the tradeoffs inherent in N use requires in-
formation on the true marginal benefits and costs of N to both private
landowners and society. The benefits of N fertilizer application, mea-
sured in terms of improved crop yields, are easily quantified based on
the market value of crop production. Regardless of how corn is used, its

value is reflected by its market prices. We define the privately optimal
rate of N fertilizer application as the rate that maximizes yield benefits
for private producers, accounting for the market price of N fertilizer
(i.e. the agronomic optimum). In contrast, the social costs of N (SCN)
are not captured in market prices for fertilizer or agricultural com-
modities and are incurred primarily by the public downwind or
downstream of agricultural N application. In part due to these differ-
ences, the value of the SCN are less well understood and more uncertain
relative to the value of corn production (Compton et al., 2011). We
define the socially optimal rate of N fertilizer application as the rate
that maximizes net benefits of N to society by accounting for the private
benefits and costs of N.

Quantifying the externalized SCN is challenging because N is lost to
aquatic, regional atmospheric, and global atmospheric pools in a
variety of forms. These loss pathways are associated with damages to
water quality, air quality, and climate change, respectively, that occur
over heterogeneous spatial and temporal scales (Erisman et al., 2013).
Valuing these damages requires tracking several forms of N across space
to endpoints where people are impacted. Multiple groups of people
suffer from N-related damages and often respond differently to these
impacts depending on their preferences and social vulnerability
(Lewandowski et al., 2008).

Monetary valuation and cost-benefit analysis are widely used
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decision-support tools for comparing and aggregating the costs and
benefits of N. Several recent studies have shown that the SCN are po-
tentially large (e.g. Keeler et al., 2016), possibly exceeding $440 billion
yr−1 in the United States (Sobota et al., 2015) and €320 billion yr−1 in
Europe (Sutton et al., 2011). These published estimates of the SCN
range by several orders of magnitude, highlighting considerable un-
certainty in the true value of N-related impacts. Improving under-
standing of the sources of uncertainty in the SCN will enhance the
credibility of this information in decision-making processes and in-
crease the likelihood of its uptake in regulatory or policy tools. We
address this need through a rigorous consideration of uncertainty in
model estimates, including assessing the sensitivity of SCN to the choice
of valuation approach and uncertainty in parameter estimates.

The diversity of N loss pathways and endpoints at which damages
occur makes it challenging to integrate the multiple SCN into a single
cost metric. Non-market valuation techniques allow for estimation of
the multiple SCN in monetary terms, however these methods vary
widely in their assumptions and model structure (Wegner and Pascual,
2011). For example, Keeler et al. (2016) valued the costs of atmospheric
forms of N (i.e. NOx and NH3) using methods based on stated pre-
ferences for avoiding health impacts from reduced air quality, whereas
costs associated with aquatic forms of N (i.e. NO3

−) were valued using
replacement costs for contaminated drinking water. These two sets of
models are based on fundamentally different assumptions about human
behaviors and preferences. Aggregating the results from these distinct
methods into a single metric makes it difficult to interpret the SCN and
understand the distributional impacts of different N-related costs on
different groups.

Another key source of uncertainty in the SCN arises from the
parametric relationships that drive the model (Refsgaard et al., 2007).
We represent model parameters with probability distributions in order
to provide a more complete understanding of the range, likelihood, and
magnitude of the SCN. We demonstrate the value of this information by
showing how parametric uncertainty may alter effective N management
strategies under various levels of risk tolerance. For example, the epi-
demiological research linking the relative risk of nitrate exposure in
drinking water and various forms of cancer has found both positive,
negative, and neutral effects (Ward et al., 2010). As such, the SCN will
vary depending on risk tolerance and how these findings are inter-
preted. The SCN will be higher when N is assumed to increase cancer
risks; inversely, the SCN will be lower when N is assumed to have
neutral or positive impacts on health.

The overall aim of this study is to improve N management strategies
that balance tradeoffs among crop production, the protection of water
and air quality, and climate change mitigation. To achieve this goal, we
ask two sets of questions:

1) What are the marginal social costs and benefits of N? How uncertain
are these estimates and what are the primary sources of uncertainty
underlying the valuation of these costs and benefits?

2) What are the privately and socially optimal rates of N fertilizer
application? How do these vary spatially and by valuation approach,
and what is their impact on society?

We answer these questions using a spatially explicit modeling fra-
mework that integrates biogeochemical and economic processes and
accounts for variation in non-market valuation techniques and para-
metric uncertainty.

2. Methods

2.1. Overview

We determined socially optimal rates of N fertilizer application by
evaluating the private and social costs and benefits of N and identifying
the rate at which net benefits of N to society are maximized. We

conducted this analysis in the state of Minnesota (MN), which produces
over 10% of corn grown in the United States (U.S.) (U.S. Department of
Agriculture − National Agricultural Statistics Service, 2013). While
crop yields in MN are N-limited and substantially increase with ni-
trogen fertilization, groundwater aquifers in several regions of the state
are highly vulnerable to nitrate contamination (Porcher, 1989; Keeler
and Polasky, 2014). Therefore, N loss from fertilizer application creates
tradeoffs between benefits to agricultural production and costs in terms
of clean air and water and climate change mitigation. Private benefits of
N were calculated based on the market value of increases in corn yields
minus the cost of fertilizer to farmers. We focused on the SCN caused by
groundwater nitrate (NO3

−) contamination, air pollution by small
particulate matter (PM2.5) formed from ammonia (NH3) and N oxides
(NOx), and global climate change from nitrous oxide (N2O) emissions.
Benefits and costs were both calculated at the county-level to account
for the spatial heterogeneity in the SCN and to match the resolution of
publically available datasets. We then assessed how variation in the
assumptions underlying the non-market valuation functions used to
value these costs and benefits on management decisions. We also
computed the probability distribution of model outputs and parameters’
contribution to variance with a Monte Carlo simulation. Using a cost-
benefit analysis framework, we then estimated socially optimal rates of
N fertilizer application and the associated impacts of internalizing the
SCN on private and social returns to N.

2.2. Conceptual framework for estimating the SCN

We adopted the conceptual framework proposed by Keeler et al.
(2016) for estimating the SCN. The framework explicitly accounts for
the costs (C) of exposure to elevated concentrations of N for differ-
entiated forms of N (j) applied at specific locations (i). This framework
accounts for the complex biogeochemistry of the N cycle, where a single
unit of reactive N is transported, transformed, and accrues damages
over time and space. We made several simplifying assumptions re-
garding the transportation and transformation of N over time to make
this framework empirically tractable. Limited by data availability and
current understanding of the N cycle, we only estimated costs asso-
ciated with the first transformation of the N cascade (see Galloway
et al., 2003) from fertilizer to atmospheric or aquatic pools (Eq. (1)),
and ignore any subsequent transformations of N.

∑ ∑=
= =

SCN N Ci
j

J

i

I

ij ij
1 1 (1)

Nij and Cij both depend on where N is applied (i= 1), the location of the
endpoints (i= 1, 2, …, n), and its form at those endpoints (j =N2O,
NOx, NH3, or NO3

−). Nij is a function of the allocation of N loss into the
appropriate concentration (i.e. ppm, μgm−3) and form, transport of N
across the landscape to endpoints of residence, and transformation and
attenuation of N between the source location and the endpoints. Cij is a
function of human populations’ exposure to N at the endpoints, the
social vulnerability and preferences for various alternatives of the ex-
posed populations, and the marginal damages incurred by the popula-
tions’ exposure to N in form j.

Using this framework, we estimated the marginal SCN applied as
fertilizer in each county in MN as a function of damages to water and
air quality and climate change. Water quality damages reflect costs
incurred to drinking water consumers who rely on groundwater in MN,
air quality damages are assessed regionally based on health impacts
incurred in MN and downwind in adjacent states, and climate change
damages reflect global costs. Most of the drinking water in this region is
from groundwater sources, and therefore, most of the exposure and
associated health impacts are linked to N in groundwater rather than
surface water. Air pollution and greenhouse gas emissions from ferti-
lizer application also represent significant damages and have well-es-
tablished approaches for evaluating costs. In addition to these damages,
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a large proportion of N fertilizer is also lost to surface water and may
have substantial impacts on aquatic ecosystems (Schlesinger, 2009).
However, the economic damages of these impacts are largely unknown
(Rabotyagov et al., 2014), thus precluding the estimation of these va-
lues in this study.

2.3. Estimating households’ exposure to N loss

We estimated the exposure to elevated concentrations of nitrate
(NO3

−) in groundwater for MN households that rely on private
drinking water wells. Using domestic well data from the County Well
Index (CWI), a spatially explicit database of wells drilled since 1974
with known NO3

− concentrations, we establish a baseline for nitrate
groundwater contamination in MN. For wells with multiple NO3

−

concentrations recordings, we only used the maximum-recorded (as
opposed to the average) concentration since the maximum contaminant
level (MCL) set by the U.S. Environmental Protection Agency represents
the highest allowable concentration allowed in drinking water. The
CWI database contains 227,686 unique domestic wells with measured
nitrate concentrations. However, there are a total of 512,721 house-
holds (assuming 2.2 individuals per household) in MN that rely on
private wells for drinking water (Maupin et al., 2014). To estimate ni-
trate concentrations for the remaining privates well in MN with un-
known nitrate concentrations, we imputed the missing data in the CWI
database by randomly sampling with replacement at the county-level.
This complete dataset of exposure to elevated concentrations of nitrate
(NO3

−) in groundwater implicitly accounts for differences in well depth
and county-level spatial variation in soil and geological characteristics
that affect the transport and attenuation of NO3

− into groundwater. In
order to account for households that rely on drinking water from public
water suppliers, we combined this dataset with a dataset collected by
Keeler et al. (2016) on NO3

− concentrations in community and non-
community public water supplies (see Keeler et al., 2016 for more de-
tails on this dataset).

We evaluated loss of N oxides (NOx), ammonia (NH3), and nitrous
oxide (N2O) from N fertilizer applied to farm fields using spatially
homogeneous emissions factors. The emissions factors we used were
drawn from national and global meta-analyses and were based on a
weighted average of the proportions N fertilizer types applied by
farmers in MN (Bierman et al., 2012). The emissions factors for NOx,
NH3, and N2O are 0.005 (Stehfest and Bouwman, 2006), 0.08
(Bouwman et al., 2006; Kusiima and Powers, 2010; U.S. Environmental
Protection Agency, 2011), and 0.01(De Klein et al., 2006; Stehfest and
Bouwman, 2006; Kusiima and Powers, 2010), respectively. Once N2O is
emitted to the atmosphere, we assumed there is no further attenuation

along its flow path and that it mixes uniformly in the global atmo-
spheric pool. As a result, damages from N2O are independent of the
spatial location of emissions. Using the Intervention Model for Air
Pollution (InMAP), we estimated exposure to PM2.5 formed from NOx

and NH3 emissions. InMAP (available to download at http://
spatialmodel.com/inmap) is an open-source spatially-explicit che-
mical transport model that simulates the annual-average transport,
transformation, and removal of air emissions (Tessum et al., 2017).
InMAP is more computationally efficient than other chemical transport
models and only requires the input of the total annual emissions at a
source location. The model treats the relationship between emissions
and PM2.5 deposition linearly, therefore we estimated the marginal
damages of emissions by running InMAP using separate shapefiles of
each county in MN with one unit of NH3 and NOx emissions. Each
model run output a receptor matrix shapefile covering the entire U.S.,
where the size of the receptor cells varies depending on population
density. Within each receptor, InMAP estimates elevated PM2.5 con-
centrations and population density using U.S. Census data.

2.4. Estimating costs of elevated exposure to N

We estimated the costs of elevated exposure to N using several non-
market valuation methodologies (Table 1). Each non-market valuation
function converts exposure to an elevated form of N at an endpoint into
costs using damage functions specific to the N form, damage, and ex-
posed population. These valuation functions depend on a suite of
parameters that we assembled from the literature (see Table S1) and
assumptions regarding the preferences of and damages experienced by
exposed populations. Models W5–W6 and A1–A2 explicitly account for
increased risk of morbidity and mortality from elevated exposure to N
(see Supplementary material for more detail). Except for model W5, all
valuation models were adopted from past studies (Table 1). To our
knowledge, this is the first study to evaluate health impacts from nitrate
in terms of premature mortalities and to estimate the cost of these
health impacts using the value of statistical life. We tested how different
non-market valuation techniques affected the SCN by varying the
modeling assumptions used to estimate the costs of exposure to NO3

−

leached to groundwater and exposure to PM2.5 formed from atmo-
spheric NH3 and NOx emissions. This is indicated in Table 1 by the
model codes W1–W6 and A1–A2. The assumptions on which each va-
luation function relies are detailed in the Supplementary material. We
then systematically test how estimates of the SCN are affected by the
assumptions of the valuation functions and the uncertainty in the
parameters.

Table 1
Valuation methodologies used to evaluate the costs and benefits of N fertilizer application.

Benefit/Cost Model code Measured Value References

Increased crop yields Y1 Net private returns from increased crop yields Iowa State University Agronomy
Extension and Outreach (2017)

Households’ exposure to NO3
− leached to

groundwater
W1 Willingness to pay for nitrate-free drinking water Crutchfield et al. (1997)
W2 Willingness to pay for nitrate-safe drinking water Crutchfield et al. (1997)
W3 Cost of least cost treatment option for contamination Keeler and Polasky (2014)
W4 Weighted-average cost of observed responses to contamination

(assuming no health impacts)
Keeler and Polasky (2014)

W5 Weighted-average cost of observed responses to contamination
(assuming drinking water with elevated NO3

− is associated with
premature mortality)

This paper

W6 Weighted-average cost of observed responses to contamination
(assuming drinking water with elevated NO3

− is associated with lost
QALYs)

van Grinsven et al. (2010)

Populations’ exposure to PM2.5 formed from
atmospheric NH3 and NOx emissions

A1 Cost of premature mortalities from exposure to elevated PM2.5 Tessum et al. (2017)
A2 Cost of lost QALYs from exposure to elevated PM2.5 Sutton et al. (2011)

Damages via climate change from N2O
emissions

C1 Cost of avoided damages from reducing N2O emissions Marten and Newbold (2012); U.S.
Interagency Working Group (2015)
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2.5. Estimating parametric uncertainty and sensitivity

We constructed probability distributions of the valuation outputs
using a Monte Carlo simulation. For each valuation function for each
county in MN, we ran the Monte Carlo simulation over 1000 iterations,
for a total of 874,000 unique outputs. After approximately 200 simu-
lations, the standard deviation of the outputs plateaus (Fig. S2). For
parameters with only one value estimate, we used that value as a
constant across all iterations of the Monte Carlo simulation. For para-
meters with two value estimates, we fit a truncated normal distribution
using the Scipy package version 0.17.0 in Python version 2.7. For
parameters with more than two value estimates, we used the Fitter
package version 1.0.4 in Python version 2.7 to fit 80 PDFs. We then
selected the fitted PDF with least sum of squares error as the best-fit
distribution. Under each simulation, parameters with two or more value
estimates were randomly sampled from their best-fit PDFs. See SI
Table 1 for a description of all parameters and their summary statistics
and best-fit PDF.

We then conducted a sensitivity analysis to estimate the valuation
functions’ sensitivity to parametric uncertainty. We used the outputs of
the Monte Carlo simulation to fit multivariate linear models relating the
costs and benefits of N (Y) to the sampled parameters for each iteration
of the Monte Carlo simulation (Xi) (Eq. (2)). We obtained the standar-
dized regression coefficients βi

2 by normalizing the slopes bi (Eq. (3))
(Saltelli et al., 2005).

∑=Y b Xi i (2)

=β b
σ
σi i

X

Y

i

(3)

The standardized regression coefficients βi
2 indicate sensitivity by

representing the first-order contribution to variance of the variable Xi to
Y. This analysis was repeated for each valuation function, where a
variable was only included in the linear model if it was an input to a
particular valuation function.

2.6. Optimizing N fertilizer application rates

We optimized the rate of N fertilizer application to maximize private
and social returns to N. The optimal rate of N fertilizer application to
maximize private returns is where gross returns (the product of corn
yields Y at application rate r and the price of corn Pc) minus private
costs (the product of rate of application and the market price of N
fertilizer) is maximized (Eq. (4)).

= −NR Y P N Pmax( )p r c r N (4)

The optimal rate of N fertilizer application to maximize social re-
turns is calculated similarly to the private optimum, except that the
SCN for fertilizer applied at site i is subtracted. The SCN are specific to
site i, but yields and the price on N remain spatially constant.

= − −NR Y P N P N SCNmax( )si r c r N r i (5)

Under the optimal rate of N fertilizer application to maximize social
returns, we calculated loss to farmers based on decreased yields from
reduced N fertilizer application.

3. Results

3.1. Variation in estimates of the SCN

The individual SCN vary widely due to parametric uncertainty, the
spatial location of application, and the form of N loss (Fig. 1). Since the
value estimates from the crop yield model (model Y1) and the climate
change model (model C1) are spatially homogenous and rely on rela-
tively fewer parametric relationships, their distributions are narrower.
In comparison, estimates from the water and air quality models (models

W1-W6 and A1-A2) exhibit wider distributions (Fig. 1). In general, the
estimated costs of exposure to PM2.5 are in general orders of magnitude
greater than the costs of exposure to NO3

− (Fig. 1). The median cost of
exposure of NO3

− is $0.073 per kg N, while the median cost of exposure
to PM2.5 is $0.54 per kg N. Exposure to NO3

− can be avoided using
replacement or remediation approaches, while exposure to PM2.5 in the
air is less easily avoided. In addition, the median value of benefits from
crop yields exceed the median value for any of the social costs in-
dividually (Fig. 1).

Due to differing assumptions and model structures, the valuation
outputs for the same category of damage costs vary by orders of mag-
nitude. The median cost of damages from NO3

− groundwater con-
tamination ranges from $0.005 to $0.66 per kg N across models W1 to
W6 and the median cost of damages from exposure to PM2.5 ranges
from $0.28 to $1.49 per kg N between models A1 and A2 (Fig. 1). The
two WTP valuation models, models W1 and W2, represent the upper
and lower bound costs of damages to groundwater quality, respectively,
demonstrating the range in attitudes towards drinking water that is
“nitrate-free” versus “nitrate-safe” (i.e. below 10 ppm nitrate-N). For
the replacement cost methods, the median cost estimate increases when
observed responses are accounted for ($0.039 per kg N; model W4), as
opposed to assuming that all households adopt the least-cost avoidance
option ($0.023 per kg N; model W3). These costs increase further when
the health impacts of “doing nothing” are estimated (models W5 and
W6). When the health impacts are valued based on premature mor-
talities-approach (model W5), the median cost is $0.044 per kg N,
whereas the median cost is $0.077 when the health impacts are valued
using a lost QALYs-approach. In contrast, the estimated costs of PM2.5

exposure are greater when based on a premature mortalities-approach
(median= $1.49 per kg N; model A1) than a lost QALYs-approach
(median= $0.28 kg N; model A2).

Similar to Keeler et al. (2016), we found that the location of N
application creates variation in the estimates of the SCN (Fig. S3). N
applied in the Central Sands and Southeastern regions of MN is more
likely to cause groundwater nitrate contamination as compared to other
regions of the state. Also, these regions of the state heavily rely on
groundwater for their water supply, whereas the Twin Cities me-
tropolitan region relies on surface water. In contrast, damages of air
pollution from NH3 and NOx emissions are disproportionately greater
for N applied in the Twin Cities metropolitan region. Since we used a
spatially constant emissions factor and social cost of carbon, the social
cost of N2O emissions are spatially homogeneous. The benefits of in-
creased crop yields are also assumed to be constant across the state.

Although multiple parameters drive each model, we found that the
uncertainty in a single parameter typically explains most of the varia-
tion in the model outputs (Fig. 2). Parameter estimates with wide dis-
tributions and large influence on the model are more likely to cause
variation in estimates of the SCN. The most sensitive parameters for
each model are: Y1–corn price, W1–WTP for NO3

−-free drinking water,
W2–WTP for NO3

−-safe drinking water, W3–cost of reverse osmosis,
W4–cost of bottled water and cost of digging a new well, W5–VSL,
W6–RR of thyroid cancer from NO3

− in drinking water, A1–VSL,
A2–RR of mortality from COPD caused by PM2.5 exposure, C1–social
cost of N2O.

3.2. Optimal rates of N fertilizer application

There are diminishing marginal returns to N, in terms of increased
crop yields, as the rate of N application increases (Fig. 3 ). While corn
yields are limited by N availability, each additional unit of N has an
incrementally smaller benefit. This functional relationship, coupled
with a constant marginal cost of N fertilizer, requires farmers to opti-
mize their rate of application such that marginal returns to N are
maximized. Increasing rates of fertilizer application beyond the op-
timal, farmers risk negative marginal returns. We found that the pri-
vately optimal rate of N fertilizer application in MN is 165 kg N ha−1 for
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corn following soybeans (Fig. 3). In 2009, farmers in MN applied
157 kg N ha−1 on average (Bierman et al., 2012). This difference is
likely due to the fact that the average price of corn used here is $4.18
per bushel, while the price of corn in 2009 was $3.70 per bushel.

Given that the corn yield response saturates near the optimal rate
and that the price of N is low relative to the price of corn, marginal

returns are highly inelastic to the rate of application. Thus, marginal
decreases in the rate of fertilizer application from the privately (i.e.
agronomically) optimal rate will have relatively small impacts on pri-
vate net returns to N, but larger impacts in reducing social costs. Simply
for demonstrative purposes, we show an example of when the SCN is
assumed to be $0.50 per kg N, a relatively mid-range estimate. If this

Fig. 1. Boxplots of marginal benefits (Y1) and costs (W1-W6, A1-A2,
C1) for each valuation function. Each boxplot indicates a unique va-
luation function, as identified by the model code on the x-axis. Each
boxplot shows the distribution of marginal values across all simula-
tions and all counties. The red line indicates the median, the bottom
and top of the box indicate the 25th and 75th percentile, and the
whiskers indicate the 5th and 95th percentile.

Fig. 2. Parameters’ contribution to variance for each
valuation function. Each column represents a unique
valuation function (described in more detail in
Table 1) and each row represents a unique para-
meter. Parameters are grouped categorically. The
sensitivity of a parameter in a given valuation func-
tion is indicated by color. Darker color cells re-
present highly sensitive parameters and lighter color
cells represent less sensitive parameters. Dark grey
cells indicate parameters that were not included in a
model.
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cost is internalized, the optimal rate of fertilizer application decreases
from 165 kg ha−1 to 137 kg ha−1. Decreasing the application rate to
account for the SCN would decrease private returns by $ 5.95 ha−1 and
would reduce social costs by $13.50 ha−1, thus creating a net social
benefit of $7.55 ha−1. We describe the results for county-specific SCN
values in the following paragraph.

Lowering application rates from what is privately optimal results in
marginal benefits to society that outweigh the costs to farmers (Fig. 4).
The aggregate SCN ranges from $0.05 to over $10 per kg N and socially
optimal rates of application ranges from 0 to 161 kg ha−1. Since the
maximum marginal net returns to N are approximately $7.44 per kg N,
the socially optimal rate of application is 0 kg ha−1 when the SCN is
greater than or equal to$7.44 per kg N. Under the adoption of socially
optimal rates of application, farmers’ losses range from 0.01 to 28.1% of
their profits and increases in net social benefits range from 0.01 and
65.6%. These ranges are due to both parametric uncertainty and spatial
variation. In one possible scenario where the optimal application rate
decreases from 165 to 130, farmers lose $10.78 ha−1, but net social
welfare increases by $14.11 ha−1 (Fig. 4). Since changes in net social
welfare already account for private losses, net social gains and private
losses are only equal when there is no change in current application
rates. As such, social gains only increase as the socially optimal N ap-
plication rate increases.

We found that the spatial configuration and magnitude of socially
optimal N rates shifts depending on the valuation methodologies used
to estimate the SCN and the probability distribution of the outputs
(Fig. 4). We calculated and compared spatially-explicit socially optimal
N application rates for two distinct combinations of methodological
approaches. The first approach evaluates health impacts based on lost
QALYs, while the second approach evaluates health impacts according
to the increase of premature mortalities (Fig. 4). The SCN for the top
row of Fig. 4 (QALYs based valuation) is the sum of the outputs from
models W6, A2, and C1. The SCN for the bottom row of Fig. 4

(premature mortalities based valuation) is the sum of models W5, A1,
and C1. The benefits for both rows were calculated using model Y1.
When health impacts are evaluated using QALYs, the highest SCN occur
in the central sands region of MN. When health impacts are evaluated
using premature mortalities, the highest SCN occur in the Twin Cities
metropolitan and southeastern regions. Also, the magnitude of the SCN
are greater under the premature mortalities methodology than the
QALYs-based methodology. Each column in Fig. 4 displays estimates of
the SCN at different percentiles along the cumulative density function
(CDF) of SCN model outputs from the Monte Carlo simulation. As the
probability on the CDF shifts increases, the magnitude of the SCN in-
creases, but the relative spatial configuration remains the same.

4. Discussion

Our work demonstrates an actionable strategy to manage tradeoffs
between agricultural production, air and water quality, and climate
change mitigation. We show that socially optimal N application rates
would greatly reduce the SCN, with a range of costs to farmers. Our
results build on past assessments of the SCN (Sutton et al., 2011; Gu
et al., 2012; Kanter et al., 2015; Sobota et al., 2015; Keeler et al., 2016)
by characterizing the probability distribution of the costs and benefits
of N and explicitly identifying potential policy implications for agri-
cultural management. Our estimated damage costs are lower than these
previously published estimates, probability due to lower population
exposure to N loss in MN than for analyses in other regions. Similar to
Keeler et al. (2016), we found that the SCN vary depending on the lo-
cation of application and that some regions of MN are more vulnerable
to damages of N than others. The spatial distribution of the SCN also
varies based on the valuation methodologies used to estimate it. We
therefore recommend that managers account for this spatial hetero-
geneity in the SCN and implement socially optimal N rates specific to
the location of application.

Spatial variation in the SCN has important implications for equity. N
applied in the north-central and southeastern regions of MN dis-
proportionately affects rural communities by damaging water quality,
while N applied in the Twin Cities metropolitan region dis-
proportionately affects urban communities by damaging air quality
(Fig. S3). The spatial configuration of the regions with the highest SCN
varied depending on how health impacts were valued. Evaluating
health impacts based on premature mortalities resulted in the costs of
damages to air quality (median=$1.49 kg N−1) far outweighing the
costs of damages to water quality (median= $0.044 kg N−1), therefore
creating greater incentives to mitigate the SCN in urban regions (Fig. 4).
In comparison, when health impacts were quantified based on lost
QALYs, there is greater overlap in the magnitude of the costs of da-
mages to air quality (median= $0.28 kg N−1) and water quality
(median= $0.077 kg N−1) with some counties having higher costs of
damages to water quality than air quality. Rabl (2003) contends that
premature mortalities may not be an appropriate metric in this context
because the cost of health impacts, especially from air pollution, may be
overestimated in comparison to using lost QALYs.

Furthermore, by recognizing uncertainty in estimates of the SCN,
decision-makers can select varying levels of caution in determining
optimal N rates. For example, a manager who is more skeptical of these
estimates may assume an SCN at the 25th percentile of its probability
distribution (Fig. 4). In contrast, a manager who is more cautious may
assume an SCN at the 75th percentile. For this reason, we do not pre-
scribe a singular optimal rate for each county, but rather allow man-
agers to apply their own preferences to the decision-making process.
However, whatever risk preference is applied, managers should re-
cognize that there is uncertainty in their applied estimate and that they
still may be under- or over-estimating the true SCN.

Our comparisons of sources of uncertainty (Fig. 2) illuminate prio-
rities for future research. Parameters related to actual market prices,
relative risk of health impacts, the value of health impacts, emerged as

Fig. 3. Returns to N fertilizer as the rate of application increases. Total return to N
($ ha−1) are shown on top and marginal returns to N ($ kg−1) are shown on the bottom.
The red line represents net private returns to N and includes the private cost of N, but not
the SCN. The blue line represents the net social returns to N and includes both the private
and SCN. This figure shows a demonstrative example of when the SCN is assumed to be
$0.50, a relatively mid-range estimate. The fill around the lines represents plus and minus
one standard error from the mean. The dotted gray lines indicate the N application rate
where net private returns and net social returns are maximized.
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key drivers of variance in the costs and benefits of N (Fig. 2). Un-
certainty in these parameters is caused by different factors. Market
prices are more certain, but fluctuate over time and by location,
therefore creating risk in long-term planning. Epidemiological research
on the relative risk of N-related health impacts is still inconsistent, but
is continuing to develop. Estimates of the value of health impacts are
highly contentious (Mrozek and Taylor, 2002) and will likely always
remain uncertain. Further research to develop a better understanding of
these parametric relationships is one way to reduce uncertainty in fu-
ture assessments of the SCN.

Our aggregated estimates of the SCN are likely to be conservative.
First, we omitted several other social costs associated with N fertilizer
application, due to limited understanding of these impacts and the data
constraints. In particular, a significant portion of N fertilizer applied in
MN is exported to freshwater and coastal ecosystems, which may cause
eutrophication and hypoxia (Schlesinger, 2009). The economic impacts
of these changes in ecosystem functioning are poorly understood and
precluded us from monetizing the social costs of N lost to surface water
(Rabotyagov et al., 2014). Second, due to computational constraints
and limited understanding of the N cycle, we only estimated the SCN
associated with the first transformation of N from fertilizer to aquatic
and atmospheric pools. Accounting for further transformations in the N
cascade (see Galloway et al., 2003) would likely increase estimates of
the SCN. Third, we assumed that the marginal SCN remains constant as
the rate of fertilizer application increases. According to field studies
however, marginal N loss increases as application rates increase (Jaynes

et al., 2001; Bouwman et al., 2002; Shcherbak et al., 2014). Thus, it is
likely that the marginal SCN in fact increases as application rates in-
crease and that we underestimated the SCN at high rates of application.
And fourth, because of a limited understanding of the epidemiological
impacts of exposure to N in drinking water, we likely omitted several
adverse health impacts that may result from NO3

− groundwater con-
tamination, such as potential birth defects (Brender et al., 2013;
Brender and Weyer, 2016).

We explicitly focused here on parametric uncertainty, but did not
include other sources of uncertainty. Uncertainty in the data inputs that
drive the models, such as Census data, or uncertainty due to the re-
solution of the data (i.e. county-level) may create greater uncertainty in
the SCN (Refsgaard et al., 2007). We also only focused on uncertainty in
the valuation of the SCN and ignored uncertainty that may have pro-
pagated from the methods used to estimate exposure to elevated con-
centrations of different forms of N loss. Moreover, we did not account
for diversity in the types of corn grown or farm management practices
across the state and assumed that all farms were conventional and
homogeneous. These omissions lead us to believe that uncertainty in
the SCN is in fact much greater than what we quantified in this analysis.

Effective management of nitrogen (N) fertilizer is central to en-
hancing agricultural productivity, while improving water and air
quality and mitigating climate change (Kanter et al., 2016). Despite the
complex biogeochemistry of N and the multitude of ways in which it
affects human well-being, our work shows that it is increasingly tract-
able to quantify and assess the tradeoffs between the costs and benefits

Fig. 4. Policy implications of internalizing the social costs of nitrogen (SCN) in each county in MN. The top row of maps represents estimates of the SCN as the sum of the outputs from
models where quality-adjusted life-years (QALYs) were used to evaluate health impacts from exposure to N (models W5, A1, and C1) and the bottom row of maps represents estimates of
the SCN as the sum of the outputs the models where premature mortalities were used (models W6, A2, and C1). Each column represents a different estimate of SCN, drawn from
percentiles of its cumulative distribution frequency (CDF). The colors are associated with values for four co-varying variables: marginal social cost of N ($ kg−1), social optimal N
application rate (kg ha−1), private loss under socially optimal N application rate ($ ha−1), and net social gain under socially optimal N application rate ($ ha−1). Although there is wide
variation in estimates of the SCN, the socially optimal rates are always lower than the privately optimal rate.
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of N at decision-relevant scales. We believe that decision-makers
equipped with this information can more effectively prioritize and
implement actionable strategies to internalize the SCN and address
these challenges. Although uncertainty is inherent when using non-
market valuation models to estimate the value of these costs and ben-
efits, illuminating the sources of uncertainty and sensitivity of as-
sumptions and parameters will increase the credibility of this in-
formation in decision-making. Despite this range of uncertainty,
however, we conclude that internalizing the SCN and deceasing rates of
N fertilizer application will result in large benefits to society.
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