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Abstract
Excessive phosphorus (P) export to aquatic ecosystems can lead to impairedwater quality. There is a
growing interest amongwatershedmanagers in using restoredwetlands to retainP fromagricultural
landscapes and improvewater quality.Wedevelop a novel framework for prioritizingwetland
restoration at a regional scale. The framework uses an ecosystem servicemodel and anoptimization
algorithm thatmaximizes P reduction for given levels of restoration cost. Applying our framework in the
LakeChamplainBasin,wefind thatwetland restoration can reduce P export by 2.6% for a budget of
$50Mand5.1% for a budget of $200M. Sensitivity analysis shows that usingfiner spatial resolution data
forP sources results in twice the P reductionbenefits at a similar cost by capturinghot-spots on the
landscape.We identify 890wetlands that occur inmore than 75%of all optimal scenarios and represent
priorities for restoration.Most of thesewetlands are smaller than 7 hawith contributing area less than
100 ha and are locatedwithin 200mof streams.Our approachprovides a simple yet robust tool for
targeting restoration efforts at regional scales and is readily adaptable toother restoration strategies.

1. Introduction

Eutrophication is a problem in many regions around
the world, resulting in locally important water quality
problems (Carpenter 2005) and the degradation of
ecosystem services worth Billions annually the US
(Dodds et al 2009). Eutrophication in freshwater
systems has been attributed to excessive phosphorus
(P) export from agriculturally-dominated landscapes
(Carpenter 2005, Schindler et al 2016). The cost of
reducing P export from uplands to waterbodies can be
substantial, so there is a need for effectivemanagement
frameworks to mitigate excessive P export in water
bodies worldwide (Conley et al 2009).

State and non-profit organizations are beginning
to deploy nature-based solutions such as wetlands and

floodplains to mitigate P export in freshwater bodies
(Bertule et al 2014, Liquete et al 2016, Thorslund et al
2017). Here, the underlying assumption is that the
natural form and functions of restored wetlands will
retain nutrients and improve water quality (see, Thor-
slund et al 2017). Despite the range of ecosystem ser-
vices provided by wetlands (Zedler 2003, Watson et al
2016) and ongoing wetland restoration efforts, wet-
land areas have been declining globally due to anthro-
pogenic alterations (Moreno-Mateos et al 2012, Serran
et al 2018). It is increasingly important to manage and
restore wetlands for supporting biodiversity and
human benefits, includingwater quality issues.

Studies have long recommended using wetlands to
retain nutrients for improving water quality (see, Van
der Valk and Jolly 1992, Mitsch and Day 2006).
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Subsequently, these studies also point to the challenges
in determining the effectiveness of wetland restoration
at large spatial scales and identifying optimal places for
restoration tomaximizewater quality benefits at a given
cost. However, to address these research needs, limited
attempts have been made to develop robust wetland
prioritization frameworks based on P retention benefits
and restoration costs at the watershed scale (New-
bold 2005, Dai et al 2016). Using a GIS-based fuzzy sto-
chastic algorithm, Dai et al (2016) demonstrated the
potential of prioritizing topography derivedwetlands in
retaining P and N in a watershed (∼600 km2) of China.
Initially, Newbold (2005) showed the application of a
simple heuristic-based prioritization approach based
onN retention capacity and restoration cost ofwetlands
in select watersheds of California, USA. These studies
were limited in the scope, particularly regarding the
choice of rather simple prioritization tools, spatial scale
(<1000 km2), or the physical wetland characteristics
considered. Studies have rarely employed formal
optimization techniques that account for costs and ana-
lyze common physical attributes of priority wetlands to
advance a general understanding needed for practi-
tioners and decision-makers elsewhere. Given that wet-
land restoration is conductedworldwide, there is a need
for robust yet straightforward approaches that can be
adaptedby stakeholders globally to prioritizewetlands.

This work provides a novel framework to advance
wetland restoration efforts based on their P retention
services and restoration cost at a regional scale. We
evaluate tradeoffs between P reduction and restora-
tion cost, and identify wetlands and related spatial
properties that are effective in retaining P. We test this
framework in the Vermont (USA) portion of Lake
Champlain Basin, which has been experiencing episo-
dic eutrophication due to excessive P export from the
contributing watersheds (Ghebremichael et al 2010,
Zia et al 2016, Isles et al 2017). To explore the potential
role of nature-based interventions in improving the
water quality of the lake, we combine a database of
potential wetland sites, a widely used ecosystem ser-
vice model, and an optimization algorithm. Our over-
arching goal is to provide a decision-making tool
based on commonly used datasets, which could be
useful for wetland managers anywhere to visualize a
range of optimal restoration solutions under the bud-
getary constraints.

2.Methods

2.1. Study site
The framework was tested in the Lake Champlain
Basin that drains 23000 km2 (figure S1 is available
online: stacks.iop.org/ERL/14/064006/mmedia) of
the US (Vermont, New York) and Canada (Quebec)
and comes under the jurisdiction of the Boundary
Waters Treaty between both countries (IJC Interna-
tional Joint Commission 2018). Lake Champlain

serves as a major source of drinking water for more
than 200 K people and contributes substantially to the
local economy (Voigt et al 2015). Our focus was on the
Vermont portion of the Lake Champlain Basin, cover-
ing 56% of the basin area, where the US Environ-
mental Protection Agency (EPA) has set a Total
Maximum Daily Load target of 34% reduction in P
export from agricultural lands and other sources to
Lake Champlain (EPA Environmental Protection
Agency 2016). The state of Vermont and non-profits
aim to meet some proportion of this P Total Max-
imum Daily Load target by restoring wetlands in the
Lake Champlain Basin. In 2017, nearly $23M in state
funds have been dedicated to supporting the imple-
mentation ofmanagement interventions tomeet clean
water targets (VCWI Vermont Clean Water Initia-
tive 2018). Here onward we refer to the Vermont-
portion of the Lake Champlain basin simply as the
LakeChamplain Basin.

2.2.Modeling framework
We used the nutrient delivery ratio (NDR) module
provided in the Integrated Valuation of Ecosystem
Services and Tradeoffs (InVEST) model to simulate P
retention services of wetlands. We coupled this model
with an optimization algorithm to find a range of
optimal solutions that might meet the budgetary
constraints of stakeholders (figure S2). Restoration
managers provided feedback on the modeling frame-
work and desired outputs to help refine their restora-
tion needs and improve the suitability of the work for
the broad community of decisionmakers.We solicited
feedback over ten times during the two-year project.

2.2.1. Simulating P retention services of wetlands
IntegratedValuation of EcosystemServices andTrade-
offs (InVEST) is an open-source modeling environ-
ment, widely used for scenario-based modeling and
assessment of ecosystem services (e.g. nutrient reten-
tion) given changes in land uses (Nelson et al 2009,
Hamel et al 2017, Redhead et al 2018, Sharp et al 2018).
The Nutrient Delivery Ratio (NDR) is a spatially
distributed InVESTmodule that quantifies the relative
fraction of a nutrient retained and transported from
uplands to the stream network. In brief, NDR
simulates the delivery ratio of P to a given pixel as a
function of landscape connectivity to the stream and
retention efficiency along the flow path. In the model,
connectivity depends on the upslope contributing
area, slope gradient, position along stream network
and, whereas retention efficiency depends on the land
use class, associated contributing area and retention
coefficients (table S1). Inputs to the NDR model
include a digital elevation model, land use land cover,
runoff proxy raster, and biophysical parameters
including, critical length, threshold flow accumula-
tion, Borselli K values, and retention efficiencies of
landcover types (table S1; Sharp et al 2018). Themodel
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output is provided as an NDR raster. The digital
elevation model and land cover datasets (Homer et al
2015) were obtained at 30 m spatial resolution from
the United States Geological Survey. The runoff proxy
raster was acquired from the seasonal water yield
module of InVEST developed for the state of Vermont
by Watson et al (2019). Details regarding biophysical
parameters can be gleaned from Sharp et al (2018).
Briefly, critical length was set to the resolution of the
land cover raster (30 m), Borselli K value was set to 4,
and the threshold flow accumulation value was set to
1000 (Sharp et al 2018).

To estimate P export, we multiplied the NDR ras-
ter with a P source raster derived from EPA’s P model
used in establishing Total Maximum Daily Load
requirements for the Lake Champlain Basin (EPA
Environmental Protection Agency 2015). The EPA’s P
model was fully calibrated and validated formore than
a dozen stream gauges using 20 years of P data (EPA
Environmental ProtectionAgency 2015). The P source
raster spanned the Lake Champlain Basin at the spatial
resolution of National Hydrography Dataset plus scale
and watersheds ranging in size from 100–70000 ha.
Due to the large computational time and to facilitate
efficient convergence of optimal solutions, we con-
strained the optimization space to high P (>75th per-
centile) source areas. It is worth noting that because of
the availability of fully validated P source raster from
EPA’s model, we simply used InVEST’s NDR to esti-
mate the differential in P retained due to change in
landuse.

To simulate the influence of P retention services of
wetlands, we conducted scenario-based modeling
using the NDR module and the state of Vermont’s
wetland database with 3606 potential wetland sites
(VANR Vermont Agency of Natural Resources 2007)
varying in size (1–300 ha), contributing area
(1–24000 ha) and distance from a stream (1–850 m).
Each scenario involved a three-step process of raster
calculations within the model. Firstly, we ran the
model for the baseline land cover and estimated the
NDR and the corresponding P export. Secondly, we
used an optimization algorithm (see section 2.2.2) to
stochastically select wetlands from the database to
update the baseline land cover and to estimate NDR
and the corresponding P export for the new scenario.
Finally, we calculated the change in P export from the
baseline at thewatershed scale.

We estimated the restoration costs associated with
each scenario, data provided by the Vermont field
office of theUnited States Department of Agriculture’s
Natural Resources Conservation Service. We defined
wetland restoration cost as the cost of purchasing land
easements, which in turn are based on market-based
land values that vary with soil type and region within
the state (NRCS Natural Resources Conservation Ser-
vice 2017). For simplicity, we do not include the costs
of active restoration or site management, which are

likelyminor compared to easement costs. The restora-
tion costs of wetlands ranged from $4839 to $2258 808
with a median of $21 250. Restoration data can be
requested from the local United States Department of
Agriculture’s offices. For regions outside the United
States, wetland managers may use local property
values as the restoration cost. To be consistent with
other input rasters, restoration costs and wetland
polygons were converted into rasters with a spatial
resolution of 30 m.

2.2.2. Genetic algorithm optimization
A genetic algorithm is a heuristic search technique
based on the concept of evolution, where solutions
iteratively evolve through mutation, crossover, and
selection to converge on a set of optimal solutions (e.g.
Eiben and Smith 2003). Genetic algorithms have been
usedwidely in solving complexwater quality problems
where a large decision space is queried for identifying
optimal spatial locations to employ management
practices (Arabi et al 2006, Maringanti et al 2009).
Wrapping a genetic algorithm around the spatially
explicit InVEST model allowed us to account for
spatial dependencies in prioritizing P retention ser-
vices of wetlands at awatershed scale.

We used a computationally efficient multi-objec-
tive genetic algorithm to find a set of Pareto optimal
restoration solutions. We define Pareto optimal solu-
tions as those that maximize P reductions (i.e. Objec-
tive function 1) for a given level of restoration cost (i.e.
Objective function 2). Outputs from the multi-objec-
tive genetic algorithm were used to analyze tradeoffs
between P reductions and costs. Such multi-objective
spatial optimization approaches are common when
solving conservation problems at regional scales (Ken-
nedy et al 2016, Gourevitch et al 2016). We imple-
mented the genetic algorithm using the Distributed
Evolutionary Algorithms in Python package in Python
version 2.7 (Fortin et al 2012). Table S2 summarizes
the genetic algorithm parameters and operators used
in the modeling framework. The objective functions
were run iteratively for 150 generations.

We conducted a sensitivity analysis on the spatial
resolution of the P source raster and themajor InVEST
model parameters, including critical length, threshold
flow accumulation, and BorselliK values. The sensitiv-
ity analysis was conducted for the Missisquoi basin
(figure S1), one of the major sub-basins (>1000 Km2)
of the Lake Champlain Basin, where a spatially inten-
sive, fully calibrated and validated P model was avail-
able from Winchell et al (2015). The Missisquoi basin
model predicts P source areas ranging from 0 to
19 kg ha−1, based on spatially distributed soil P data
and calibrated to river loads as described in Winchell
et al (2015). The EPA’s Lake Champlain basin model
was similarly developed and calibrated from basin-
wide soils data and calibrated to river stations, but P
source areas have been rescaled to a coarser resolution
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of theNational HydrographyDataset plus scale, with P
source values ranging from 0–2 kg ha−1. Sensitivity
analysis of the biophysical parameters was conducted
by increasing and decreasing the default parameter
values bymore than two-fold. For instance, the default
Borselli K value varied from 4 to 2 and 6. The critical
length was varied from 30 m (default) to 60 m and
90 m; and the threshold flow accumulation was varied
from1000 (default) to 500 and 2000.

2.2.3. Irreplaceability index
We developed an ‘irreplaceability’ index to compare
the importance of wetlands in achieving our restora-
tion objectives. We defined the irreplaceability of a
given wetland as the frequency of its occurrence across
all Pareto optimal solutions. For instance, a wetland
with an irreplaceability index of 0.5 is one that was
optimally selected in 50%of optimal genetic algorithm
solutions. To investigate whether highly irreplaceable
wetlands may be predicted from easily measurable
characteristics, we summarized a set of observable
variables including, wetland size, distance from a
stream, contributing area, and related percentage of
land use for wetlands with high (>0.75) and low
(<0.75) irreplaceability. The selection of the top
quartile (>0.75) of the irreplaceable wetlands is
arbitrary, but it provided a large enough sample size of
the most optimal wetlands to test their statistical
distributions. Further, a Wilcoxon-Rank Sum was
used to test if medians of wetland characteristics are
significantly different between wetlands of high and
low irreplaceability values.

3. Results

Our findings revealed that wetland restoration in the
Lake Champlain Basin could reduce P export over
baseline by 2.6% for a budget of $50M (scenario A)
and 5.1% for a budget of $200M (ScenarioD;figure 1).
The tradeoff curve provided optimal solutions (i.e. sets
of wetlands) for restoring 0.5% (scenario A) to 2%
(scenario D) of the watershed area of the Lake
Champlain. The flattening of the curve from scenarios
A toD illustrates diminishingmarginal P reductions as
costs and the area restored increased (figure 1). The
watershed area restored in scenario D corresponded to
3489 wetlands out of the potential 3606 total wetland
sites. For these four select scenarios, median wetland
size, associated contributing area, and distance from
stream were approximately 3 ha, 14 ha, and 129 m,
respectively. Lastly, these wetlands were downgradient
from pasture (median=31%) and cultivated (med-
ian=6%) lands.

Overall, the irreplaceability index varied from
0.007–0.97, indicating that some wetlands were selec-
ted in as few as 0.7% and others in as many as 97% of
all optimal solutions (figure 2). There were about 890
wetlands in the top quartile (>0.75) of the irreplace-
able wetlands, most were smaller than 7 ha with a con-
tributing area of less than 100 ha and within 200 m
from the stream (figure 3). Among these wetlands,
only∼20% were larger than 7 ha or had a contribut-
ing area greater than 100 ha. The medians of wetland
size and distance from streamwere significantly differ-
ent between wetlands of high irreplaceability and wet-
lands of low irreplaceability (Wilcoxon, p<0.05;
figure 3).

Figure 1.Tradeoff curve showing a range of optimal restorations solutions (i.e. set of wetlands) tomitigate P loading atminimal cost in
the LakeChamplain Basin, Vermont. Points representmaximum reductions in phosphorus export for a range of restoration budgets.
Maps on the bottompanel correspond to points A–D in the tradeoff curve. PointD involves restoration of>90%ofwetlands in the
basin (equivalent to 1.1%of watershed area) at relatively high cost, while point A involves restoration of<30%ofwetlands in the
basin (equivalent to 0.02%ofwatershed area), at relatively low cost.
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Importantly, replacing basin-wide P source data
with finer resolution data from the Missisquoi basin
resulted in a two-fold increase in our estimates of P
reduction for the same restoration cost, compared to
using basin-wide data for Missisquoi (figure 4). Finer
resolution P data also resulted in a greater marginal P
reduction with an increasing number of wetlands
restored, compared to the low-resolution P data. On
the contrary, varying the InVEST biophysical para-
meters had minimal influence on the optimal solutions

for the range of values tested in our sensitivity analysis
(figure 4). The lack of model sensitivity to biophysical
parametersmay be because outcomeswere expressed as
a change from the baseline condition rather than abso-
lute values.

4.Discussion

Our framework enabled us to quantify P retention
services for 3606 wetlands and the potential efficacy of

Figure 2. Irreplaceability of wetlands in theVermont portion of Lake Champlain Basin. Irreplaceable wetlands occur in themajority
of optimal scenarios, and are robust priorities for restoration efforts to reduce phosphorus export. Panels to the right correspond to
three black rectangles in themap at left.

Figure 3. Spatial characteristics of wetlands: (a) contributing area, (b) size, and (c)distance from the nearest stream,with high and low
irreplaceability (inset).
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wetlands as nature-based solutions to improve water
quality in agricultural landscapes. Irreplaceability
values identify a robust set of priority wetlands that are
important restoration targets across a range of bud-
gets. Wetlands with high irreplaceability values
(>0.75) highlight physical characteristics that tend to
be associatedwith cost-effective P retention services.

Our results suggest that reductions in P export of
2.6%–5.1% are achievable from restoring wetlands at
a cost ranging from $50–$200M in the Lake Cham-
plain Bain (figure 1). It is important to note that the
sensitivity analyses, conducted on one of the sub-
basins of Lake Champlain, with finer resolution P
source data suggests that P reductions may be twice as
large as demonstrated here (figure 4). The greater
reduction in P values are likely because higher resolu-
tion data are able to capture fine scale ‘hotspots’ of P
loading, which are averaged out and obscured by data
at coarser spatial resolutions (figure 4). Further, the
steeper slope of the Pareto curve for high-resolution P
data indicates greater marginal returns to increasing
the budget and restoring more wetlands. By using the
coarse data that are available at the Lake Champlain
basin scale, we may have underestimated P retention
by a factor of two or more. Wetlands may be sub-
stantiallymore effective than our results indicate.

In general, studies have long discussed the poten-
tial impacts of wetland restoration in reducing nutri-
ent export at a watershed scale (Mitsch and
Gosselink 2000, Verhoeven et al 2006). However, there
has been less emphasis on the economic feasibility of
thewetland restoration (Widney et al 2018).Wang and
Mitsch (1998) reported 5%–67% reduction in P while
restoring to 1%–15% of the watershed area, whereas

Verhoeven et al (2006) reported 30% reduction in N
export while restoring 2%–7% of the watershed area.
However, most of these studies did not consider prior-
itization and restoration cost in the analysis; therefore,
the economic feasibility of achieving higher nutrient
reductions more effectively due to restoration could
not be evaluated. Our P reduction estimates are in the
range reported by Wang and Mitsch (1998); but our
estimates are conservative due to smaller restoration
area, use of low retention efficiency for wetlands, and
coarser resolution of P data that missed P hot-spots in
the Lake Champlain Basin (figure 4). Overall, these
results suggest that wetland restoration has the poten-
tial to contribute to reaching the Total Maximum
Daily Load target for P established by EPA (EPAEnvir-
onmental Protection Agency 2016). While the costs of
wetland restoration are substantial, wetlands provide a
range of valuable ecosystem services (e.g. flood
attenuation, biodiversity, carbon storage) that we did
not evaluate here. So, the total benefits of wetland
restoration are surely underestimated in this analysis.
However, if these other suite of ecosystem services are
to be considered, we expect that the benefits provided
bywetlands will outweigh the restoration costs.

Wetlands with high irreplaceability are likely to be
part of any optimal solution, no matter the available
budget. We found these wetlands to be smaller in size
or are nearby streams, compared to wetlands of lower
irreplaceability. These results indicate that smaller
wetlands, if well-located, can be equally or more
important than the larger wetlands in retaining P. Our
results support those of recent studies showing that P
retention capacity is substantially higher for smaller
wetlands (Cohen and Brown 2007, Cheng and

Figure 4. Sensitivity of the optimal solutions to the spatial resolution of P source data and InVESTmodel parameters for the
Missisquoi basin, amajor sub-basin of LakeChamplain Basin. Black symbols represent optimal solutions using fine-scale data on P
loading (Winchell et al 2015). All other symbols represent coarse-scale data on P loading that we used basinwide. At this coarse scale,
we varied other InVEST parameters: threshold flow accumulation at 500 (Threshold500) and 2000 (Threshold2000), critical length at
60 m (CL60) and 90 m (CL90), Borselli constant (K ) at 2 (K2) and 6 (K6) andBaselinemodel (K=4, Threshold=1000, Critical
length=30 m, andNationalHydrographyDataset plus scale lowP resolution P source data). See Sharp et al (2018) for descriptions of
these parameters in the InVESTmodel.
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Basu 2017) and that the position of wetlands along
streams exerts strong control over their nutrient reten-
tion capacity (Hansen et al 2018). These approach can
provide a simple heuristic for identifying wetlands,
likely to be important in retaining P, based on readily
available landscape characteristics at a large spatial
scale. Given the coarse data resolution and simple
models used in our analysis, results for individual wet-
lands should be interpreted with caution. Wetlands
with high irreplaceability scoresmay not be viable can-
didates for actual restoration, for practical or other
reasons. Nevertheless, combining broad optimiza-
tions and site-specific knowledge can help decision-
makers decide where on the landscape to restore wet-
lands to regulatewater quality.

We show that restoring wetlands can be an impor-
tant part of retaining nutrients and improving water
quality. Tradeoff curves based on optimizations repre-
sent a powerful tool to help regulatory agencies, non-
profits, and landowners explore benefits from a range
of restoration scenarios. This work reported here has
resulted in a close collaboration among scientists and
restoration managers and decision-makers and fur-
ther contributes to growing research in translational
ecology (Enquist et al 2017). That said, two enhance-
ments to this decision support tool would expand its
utility for managers. First, the irreplaceability values
estimated for wetlands could be combined with maps
of other wetland co-benefits to prioritize conservation
based on multiple ecosystem services (e.g. biodi-
versity, flood-attenuation). Second, irreplaceability
maps can complement other nutrient control mea-
sures, e.g. channel, soil, and crop management strate-
gies (Schoumans et al 2014) to meet large P reduction
goalsmore effectively.

We recognize that important limits to the long-term
efficacy of wetland restoration are not explored in this
study. The nutrient retention capacity of wetlands may
decrease over time (Land et al 2016), and increases in
local nutrient export may affect the overall biodiversity
of wetlands themselves (Brinson and Malvárez 2002).
Because of these effects, watershed managers need to
carefully evaluate all potential consequences of restoring
wetlandsnowand in thenear future.

5. Conclusions

We demonstrated the viability of wetland restoration
as a management tool to mitigate the P export, which
may lead to the improvement of water quality at the
regional scale. The tradeoff curves highlighted the
range of marginal benefits that wetlands may provide
multiple stakeholder and decision makers. The irre-
placeability index highlighted the most efficient wet-
lands that can be prioritized and restored; and the
associated landscape properties can help restore wet-
lands for decision makers here and elsewhere. The
spatial prioritization framework proposed here can be

adapted for other nutrients, ecosystem services, or
restoration goals.
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